Pathophysiology of perinatal brain damage.

نویسندگان

  • R Berger
  • Y Garnier
چکیده

Perinatal brain damage in the mature fetus is usually brought about by severe intrauterine asphyxia following an acute reduction of the uterine or umbilical circulation. The areas most heavily affected are the parasagittal region of the cerebral cortex and the basal ganglia. The fetus reacts to a severe lack of oxygen with activation of the sympathetic-adrenergic nervous system and a redistribution of cardiac output in favour of the central organs (brain, heart and adrenals). If the asphyxic insult persists, the fetus is unable to maintain circulatory centralisation, and the cardiac output and extent of cerebral perfusion fall. Owing to the acute reduction in oxygen supply, oxidative phosphorylation in the brain comes to a standstill. The Na(+)/K(+) pump at the cell membrane has no more energy to maintain the ionic gradients. In the absence of a membrane potential, large amounts of calcium ions flow through the voltage-dependent ion channel, down an extreme extra-/intracellular concentration gradient, into the cell. Current research suggests that the excessive increase in levels of intracellular calcium, so-called calcium overload, leads to cell damage through the activation of proteases, lipases and endonucleases. During ischemia, besides the influx of calcium ions into the cells via voltage-dependent calcium channels, more calcium enters the cells through glutamate-regulated ion channels. Glutamate, an excitatory neurotransmitter, is released from presynaptic vesicles during ischemia following anoxic cell depolarisation. The acute lack of cellular energy arising during ischemia induces almost complete inhibition of cerebral protein biosynthesis. Once the ischemic period is over, protein biosynthesis returns to pre-ischemic levels in non-vulnerable regions of the brain, while in more vulnerable areas it remains inhibited. The inhibition of protein synthesis, therefore, appears to be an early indicator of subsequent neuronal cell death. A second wave of neuronal cell damage occurs during the reperfusion phase. This cell damage is thought to be caused by the post-ischemic release of oxygen radicals, synthesis of nitric oxide (NO), inflammatory reactions and an imbalance between the excitatory and inhibitory neurotransmitter systems. Part of the secondary neuronal cell damage may be caused by induction of a kind of cellular suicide programme known as apoptosis. Knowledge of these pathophysiological mechanisms has enabled scientists to develop new therapeutic strategies with successful results in animal experiments. The potential of such therapies is discussed here, particularly the promising effects of i.v. administration of magnesium or post-ischemic induction of cerebral hypothermia.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pathophysiological Roles of Cytokines in the Brain During Perinatal Asphyxia

The essential pathophysiology of perinatal asphyxia (PA) may be attributed to ischemia-reperfusion injuries.The resultant circulation failures contribute to cardiorespiratory dysfunctions at birth. The damage affects tissues and organs, leading to irreparable sequelae such as persistent cerebral palsy. In addition, ischemia-reperfusion injuries due to PA may cause aberrant immunological respons...

متن کامل

Animal models of hypoxic-ischemic brain damage in the newborn.

Controversy continues over which animal model to use as a reflection of human disease states. With respect to perinatal brain disorders, scientists must contend with a disease in evolution. In that regard, the perinatal brain is at risk during a time of extremely rapid development and maturation, involving processes that are required for normal growth. Interfering with these processes, as part ...

متن کامل

Functional vision in children with perinatal brain damage.

UNLABELLED Many authors have discussed the effects of visual stimulations on visual functions, but there is no research about the effects on using vision in everyday activities (i.e. functional vision). Children with perinatal brain damage can develop cerebral visual impairment with preserved visual functions (e.g. visual acuity, contrast sensitivity) but poor functional vision. OBJECTIVE Our...

متن کامل

Barrier mechanisms in neonatal stroke

Clinical data continue to reveal that the incidence of perinatal stroke is high, similar to that in the elderly. Perinatal stroke leads to significant morbidity and severe long-term neurological and cognitive deficits, including cerebral palsy. Experimental models of cerebral ischemia in neonatal rodents have shown that the pathophysiology of perinatal brain damage is multifactorial. Cerebral v...

متن کامل

Perinatal brain damage--from pathophysiology to prevention.

Children undergoing perinatal brain injury often suffer from the dramatic consequences of this misfortune for the rest of their lives. Despite the severe clinical and socio-economic significance, no effective clinical strategies have yet been developed to counteract this condition. This review describes the pathophysiological mechanisms that are implicated in perinatal brain injury. These inclu...

متن کامل

P113: Inflammation and its Role in Neurological Diseases with an Emphasis on MS

Inflammation is an important factor in the pathophysiology of neurological diseases and the physiological response of the immune system against internal and external harmful stimuli. Inflammation is the natural response of the body to damage, which leads to the removal of debris from dead cells and infections from damage and tissue repair. In this study, neuropathic inflammation and its role in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Brain research. Brain research reviews

دوره 30 2  شماره 

صفحات  -

تاریخ انتشار 1999